
Architecture of Enterprise Applications XI
Architectural Patterns –

DB Access

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems

Agenda

• Database Accessing

2

REliable, INtelligent & Scalable Systems

Database Accessing - Unit of Work

• ORM
– How to maintain the objects affected by a business transaction and

coordinate the writing out of changes and the resolution of concurrency
problems.

– A Unit of Work keeps track of everything you do during a business
transaction that can affect the database. When you're done, it figures out
everything that needs to be done to alter the database as a result of your
work.

REliable, INtelligent & Scalable Systems

Unit of Work-How It Works

• The obvious things that cause you to deal with the database are
changes: new object created and existing ones updated or
deleted.
– Unit of Work is an object that keeps track of these things.

– As soon as you start doing something that may affect a database, you
create a Unit of Work to keep track of the changes.

• The key thing about Unit of Work is that, when it comes time to
commit, the Unit of Work decides what to do.
– Of course for this to work the Unit of Work needs to know what objects it

should keep track of.

– You can do this either by the caller doing it or by getting the object to tell
the Unit of Work.

REliable, INtelligent & Scalable Systems

Unit of Work-How It Works

• With caller registration, the
user of an object has to
remember to register the
object with the Unit of Work
for changes.

• Any objects that aren't
registered won't be written
out on commit.

• Although this allows
forgetfulness to cause
trouble, it does give
flexibility in allowing people
to make in-memory changes
that they don't want written
out.

REliable, INtelligent & Scalable Systems

Unit of Work-How It Works

• With object registration, the
onus is removed from the caller.

• The usual trick here is to place
registration methods in object
methods.
– Loading an object from the

database registers the object as
clean;

– the setting methods register the
object as dirty.

• For this scheme to work the

Unit of Work needs either to be
passed to the object or to be in a
well-known place.

REliable, INtelligent & Scalable Systems

Unit of Work-How It Works

• Another technique is unit of work
controller, which the TOPLink
product uses. Here the Unit of Work
handles all reads from the database
and registers clean objects
whenever they're read.
– Rather than marking objects as

dirty the Unit of Work takes a copy
at read time and then compares the
object at commit time.

– Although this adds overhead to the
commit process, it allows a
selective update of only those fields
that were actually changed; it also
avoids registration calls in the
domain objects.

REliable, INtelligent & Scalable Systems

Unit of Work-When to Use It

• The fundamental problem that Unit of Work deals with is
keeping track of the various objects you've manipulated so that
you know which ones you need to consider to synchronize your
in-memory data with the database.

• The great strength of Unit of Work is that it keeps all this
information in one place. Once you have it working for you, you
don't have to remember to do much in order to keep track of
your changes.

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• Here's a Unit of Work that can track all changes for a given
business transaction and then commit them to the database
when instructed to do so.

• To store the change set we use three lists: new, dirty, and
removed domain objects.

class UnitOfWork...
 private List newObjects = new ArrayList();
 private List dirtyObjects = new ArrayList();
 private List removedObjects = new ArrayList();

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• The registration methods maintain the state of these lists. They must perform basic
assertions such as checking that an ID isn't null or that a dirty object isn't being
registered as new.

class UnitOfWork...
 public void registerNew(DomainObject obj) {
 Assert.notNull("id not null", obj.getId());
 Assert.isTrue("object not dirty", !dirtyObjects.contains(obj));
 Assert.isTrue("object not removed", !removedObjects.contains(obj));
 Assert.isTrue("object not already registered new", !newObjects.contains(obj));
 newObjects.add(obj);
 }

 public void registerDirty(DomainObject obj) {
 Assert.notNull("id not null", obj.getId());
 Assert.isTrue("object not removed", !removedObjects.contains(obj));
 if (!dirtyObjects.contains(obj) && !newObjects.contains(obj)) {
 dirtyObjects.add(obj);
 }
 }

REliable, INtelligent & Scalable Systems

Unit of Work-Example

public void registerRemoved(DomainObject obj) {
 Assert.notNull("id not null", obj.getId());
 if (newObjects.remove(obj))
 return;
 dirtyObjects.remove(obj);
 if (!removedObjects.contains(obj)) {
 removedObjects.add(obj);
 }
 }

public void registerClean(DomainObject obj) {
 Assert.notNull("id not null", obj.getId());
}

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• commit() will locate the Data Mapper for each object and invoke the
appropriate mapping method. updateDirty() and deleteRemoved() aren't
shown, but they would behave like insertNew(), which is as expected.

class UnitOfWork...
 public void commit() {
 insertNew();
 updateDirty();
 deleteRemoved();
 }
 private void insertNew() {
 for (Iterator objects = newObjects.iterator(); objects.hasNext();) {
 DomainObject obj = (DomainObject) objects.next();
 MapperRegistry.getMapper(obj.getClass()).insert(obj);
 }
}

mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch10lev1sec4.html
mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch10lev1sec4.html

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• As each business transaction executes within a single thread we can
associate the Unit of Work with the currently executing thread using the
java.lang.ThreadLocal class.

class UnitOfWork...
 private static ThreadLocal current = new ThreadLocal();
 public static void newCurrent() {
 setCurrent(new UnitOfWork());
 }
 public static void setCurrent(UnitOfWork uow) {
 current.set(uow);
 }
 public static UnitOfWork getCurrent() {
 return (UnitOfWork) current.get();
 }

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• Now we can now give our abstract domain object the marking methods to
register itself with the current Unit of Work.

class DomainObject...
 protected void markNew() {
 UnitOfWork.getCurrent().registerNew(this);
 }
 protected void markClean() {
 UnitOfWork.getCurrent().registerClean(this);
 }
 protected void markDirty() {
 UnitOfWork.getCurrent().registerDirty(this);
 }
 protected void markRemoved() {
 UnitOfWork.getCurrent().registerRemoved(this);
}

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• Concrete domain objects need to remember to mark themselves
new and dirty where appropriate.

class Album...

 public static Album create(String name) {

 Album obj = new Album(IdGenerator.nextId(), name);

 obj.markNew();

 return obj;

 }

 public void setTitle(String title) {

 this.title = title;

 markDirty();

}

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• The final piece is to register and commit the Unit of Work where
appropriate. This can be done either explicitly or implicitly.
Here's what explicit Unit of Work management looks like:

class EditAlbumScript...
 public static void updateTitle(Long albumId, String title) {
 UnitOfWork.newCurrent();
 Mapper mapper = MapperRegistry.getMapper(Album.class);
 Album album = (Album) mapper.find(albumId);
 album.setTitle(title);
 UnitOfWork.getCurrent().commit();
}

REliable, INtelligent & Scalable Systems

Unit of Work-Example

• Here's a servlet that registers and commits the Unit of Work for its concrete subtypes.
Subtypes will implement handleGet() rather than override doGet(). Any code
executing within handleGet() will have a Unit of Work with which to work.

class UnitOfWorkServlet...
 final protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 try {
 UnitOfWork.newCurrent();
 handleGet(request, response);
 UnitOfWork.getCurrent().commit();
 } finally {
 UnitOfWork.setCurrent(null);
 }
 }

 abstract void handleGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException;

REliable, INtelligent & Scalable Systems

Database Accessing

• ORM

– How to guarantee the same data will be loaded only once?

• Identity Map: Ensures that each object gets loaded only once by keeping every loaded

object in a map. Looks up objects using the map when referring to them.

• An Identity Map keeps a record of all objects that have been read from the database in

a single business transaction. Whenever you want an object, you check the Identity

Map first to see if you already have it.

REliable, INtelligent & Scalable Systems

Identity Map-How It Works

• The basic idea behind the Identity Map is to have a series of maps containing
objects that have been pulled from the database.
– In a simple case, with an isomorphic schema, you'll have one map per database table.

When you load an object from the database, you first check the map.
• If there's an object in it that corresponds to the one you're loading, you return it.
• If not, you go to the database, putting the objects into the map for future reference as you

load them.

• Choice of Keys
– The obvious choice is the primary key of the corresponding database table.

• Explicit or Generic
– findPerson(1) or find("Person", 1).

• How Many
– one mapper class or one map for the whole session.

• Where to Put Them
– You need to ensure that each session gets it's own instance that's isolated from any

other session's instance.
– Thus, you need to put the Identity Map on a session-specific object.

REliable, INtelligent & Scalable Systems

Identity Map-When to Use It

• In general you use an Identity Map to manage any object brought
from a database and modified.
– The key reason is that you don't want a situation where two in-memory

objects correspond to a single database record-you might modify the two
records inconsistently and thus confuse the database mapping.

• Another value in Identity Map is that it acts as a cache for

database reads, which means that you can avoid going to the
database each time you need some data.

• You may not need an Identity Map for immutable objects.

• Identity Map helps avoid update conflicts within a single session,
but it doesn't do anything to handle conflicts that cross sessions.

REliable, INtelligent & Scalable Systems

Identity Map-Example

• For each Identity Map we have a map field and accessors.

 private Map people = new HashMap();

 public static void addPerson(Person arg) {

 soleInstance.people.put(arg.getID(), arg);

 }

 public static Person getPerson(Long key) {

 return (Person) soleInstance.people.get(key);

 }

 public static Person getPerson(long key) {

 return getPerson(new Long(key));

}

• One of the annoyances of Java is the fact that long isn't an object
so you can't use it as an index for a map.

REliable, INtelligent & Scalable Systems

Database Accessing

• ORM

– Lazy load vs. Eager load?

• Lazy load An object that doesn't contain all of the data you need but knows how to get

it.

• A Lazy Load leaves a marker in the object structure so that if the data is needed it can

be loaded only when it is used. As many people know, if you're lazy about doing things

you'll win when it turns out you don't need to do them at all.

REliable, INtelligent & Scalable Systems

Lazy Load-How It Works

• Inheritance often poses a problem with Lazy Load.
– If you're going to use ghosts, you'll need to know what type of ghost to

create, which you often can't tell without loading the thing properly.

– Virtual proxies can suffer from the same problem in statically typed
languages.

• Another danger with Lazy Load is that it can easily cause more
database accesses than you need.
– A good example of this ripple loading is if you fill a collection with Lazy

Loads and then look at them one at a time.

– One way to avoid it is never to have a collection of Lazy Loads but, rather
make the collection itself a Lazy Load and, when you load it, load all the
contents.

• In theory you might want a range of different degrees of laziness,
but in practice you really need only two: a complete load and
enough of a load for identification purposes in a list.

REliable, INtelligent & Scalable Systems

Lazy Load-When to Use It

• Deciding when to use Lazy Load is all about deciding how much
you want to pull back from the database as you load an object,
and how many database calls that will require.
– It's usually pointless to use Lazy Load on a field that's stored in the same

row as the rest of the object, because most of the time it doesn't cost any
more to bring back extra data in a call, even if the data field is quite large.

– That means it's usually only worth considering Lazy Load if the field
requires an extra database call to access.

• In performance terms it's about deciding when you want to
take the hit of bringing back the data.
– Often it's a good idea to bring everything you'll need in one call so you

have it in place, particularly if it corresponds to a single interaction with
a UI.

– The best time to use Lazy Load is when it involves an extra call and the
data you're calling isn't used when the main object is used.

REliable, INtelligent & Scalable Systems

Database Accessing

• How to access non-relational DBMS?

– Requirement:

• We need to access a file-based system to get the historical data about students.

– GateWay

• An object that encapsulates access to an external system or resource.

REliable, INtelligent & Scalable Systems

Database Designing

• Cluster or not? And how?

– Clustering is a way to improve the processing ability of system.

– Load balancing and communication in cluster do a negative effect on

performance.

– Horizontal clustering vs. Vertical clustering

– The relationship between scalability and the scale of cluster is NOT

linear.

REliable, INtelligent & Scalable Systems

References

• Martin Fowler’s Patterns of Enterprise Application Architecture

27

Thank You!

